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THE LINEAR PROBLEM OF A VIBRATOR IN A SUBSONIC BOUNDARY LAYER* 

E.D. TERENT'EV 

The subsonic flow over a flat plate with a fitted to it triangular vibrator which 
effects harmonic oscillations is studied. The plate and vibrator are assumed heat- 
insulated, and the vibrator dimensions and oscillation frequency is such that the 
flow can be defined by equations of the boundary layer with self-induced pressure. 
The oscillation amplitude is assumed small, making it possible to linearize these 
equations. The solution is obtained by double application of the Fourier transform 
with respect to time and longitudinal coordinate. Inversetransformationis achieved 
by numerical methods. Analysis is carried out for the vibrator frequency o lower 
than the critical 0. predicted by the classical theory of stability. It is shown 
that vibrator-induced perturbations become rapidly damped upstream. Damping down- 
stream is rapid for o considerably lower than o, and slows down as o approaches Q. 

Consider the flow over a heat-insulated plate whose front part is at rest, followed by 
an oscillating section, the vibrator, and the end part is a stationary flat plate. Let the 
front part length be L* and the rear part O(L*) (the asterisk denotes dimensional quantities). 
Let the unperturbed oncoming stream be subsonic with the Mach number M, less than one by a 
finite quantity and velocity U,* directed along the stationary parts of the body. The sub- 
scripts 00 and 21'denote gas parameters in the unperturbed steady stream and at the wall, re- 
spectively. We use the Cartesian system of coordinates 2, y with origin at the point of 
junction of the front stationary part with the vibrating part, and the following notation: t* 
for time, v,*, vy* for the velocity vector components, p* for density, p* for pressure, T* 
for temperature, and x for the ratio of specific heats. For simplicity the dependence of the 
first viscosity coefficient on temperature is assumed to be locally linear (for T*- Tw*); 
h,*lh,,* = CT’ where T’ = T*!T,*, 
value of the Reynolds 

and the Prandtl number to be unity. Instead of the inverse 
number we use the small parameter e - Re,+ (Re, = p,*U,*L*/h,,*). 

We select the vibrator longitudinal dimension to be 0(L*e3), the oscillation amplitude 
O(L*e’), and the oscillation frequency 0(U,*/L*e2). For defining the motion generated by such 
vibrator itisconvenient to separate three characteristic regions /1,2/, viz. the upper or 
external region of the inviscid subsonic flow (y, * = O(L*e3)), the intermediate of the conven- 
tional boundary layer (y,* = 0(L*e4), and the lower region of the boundary layer with self- 
induced pressure (y, * = O(L*e6)). The basic difficulties in such scheme relate to the deriva- 
tion of solution for the lower part. That solution enables us to obtain in explicit form the 
parameters of flow in the intermediate and upper regions /l-55/. Below we deal only with the 
lower region using the following dependent and independent variables /4,5/: 

1) 

where the constant h = 0.3321. is determined by the equality L* Re,-‘14 (us* (L*, 0)/U,*)/@* = 
hC+T,’ from the Blasius solution for the unperturbed boundary layer. Substituting expres- 
sions (1) into the Navier-Stokes system of equations, retaining the principal terms in e and 
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stipulating the fulfillment of conditions of merging as s--t-cc and Y-t M, for the 

subsonic boundary layer with self-induced pressure we obtain the following system of 

ions and boundary conditions /4,5/: 

p= I, _%++o,+o, _p+u_!E+“~=-$ i-G 

unsteady 

equat- 

(2) 

x-+--co, u -+ y, p-0, Y--too, 

-a -m 

In the last condition with y+ c4 the inner integral is to be understood in the Cauchy 
sense of the principal value. We shall also seek a solution approaching the solution for the 

unperturbed boundary layer as x+co,which, as shown below, is linked with the constraints 
imposed on the vibrator oscillation frequency. 

We specify the condition of adhesion on the body as 

u (t? I, Y, (t, r)) = %, v (& r, Y?B (& 5)) = 01, (3) 

Let the oscillating part of the body be defined, as in the problem of the vibrator in a 

supersonic boundary layer /6/, by the equation 

yw=uf(t,x)=uof,(x)cosot, o<l, o>o (4) 

where o is the dimensionless frequency and function f*(z) defines the (vibrator) triangular 

form with parameters a and b (fl(x) = 0 h w en x< 0, 2x when O,<x*< 6, 2b (a -~)/(a - b) when 
b,<x\<a, and 0 when ~>,a). The smallness of parameter o enables us to linearize problem 

(2), (3) by expanding the solution in series in powers of u 

u = Y + u111 + . . . . v = (sU1 + . . . . p = spp1 + . . . 

Equations and limit conditions determined by (2) and the condition as x--f 00 are of the 

form 
!!!L+_&o, _+o, $L+ y~+vl=-g+~ 

The adhesion condition (3) at wall (4) implies that 

u1 (t, 5, 0) = - fl (5) cos wt, v1 (t, 2, 0) = - fi (5) 0 sin cot 

where only the principal terms are retained. 

For solving problem (5), (6) we use the Fourier transform 

mm 

El (Ol, a Y) = & * 
s \ . e- 

iol~o~x ul(t, I, Y)dt dx 
-cc -m 

Eliminating from system (5) VI and pi and passing from + to ii,, we obtain 

(5) 

(6) 

ax, ali, 
- = (Lazy + iOl) - w ay 

The solu'tion of this equation which satisfies the condition of boundedness of c, as y+ 

00 is of the form 

where Ai is the Airy function /7/, i = exp(in/2), B(o,, 61~) is an arbitrary function of its 

arguments. The limit and boundary conditions (5) and (6) enable us to express B (Q. 0%) in 
terms of ~(w,,o~) and obtain &(o,,o~), where 7 and p are the Fourier transforms f (4 4 and 

Pl (h 4 t respectively. We have m 

P1 = 10% I Ai’ 63 7 ((olr 4/Q 64 4, Q=23& I,= Ai(x)dx=+-, 
\ 

(7) 
o?* 

rl(Q)=[Ai(z)dr, 

ii 

Q (Sl, wI) == - Ai' (Q) i- i':~~~/s 1 co2 j [I, - I, (S)] 
; 

where the prime denotes the derivative of Airy's function. 
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Let us calculate the pressure. The expression for p1 is obtained using the inverse 
Fourier transform. Calculations similar to those in /6/ yield 

To select the single-valued branch of 0 in the complex plane eg we make a slit from 
point o along the imaginary axis (Fig.l), i.e. niZ>arg%>-3nl2. If in formulas (8) we make 
o approach zero and assume parameters a and b to be considerably greater than unity, then 
for 111=0(l) the pressure will be equal to that near a corner at rest /8/. 

As shown in /9,10/, the linear theory of boundary layer stability with respect to long- 
wave perturbations and the analysis of small perturbations in the theory of the boundary layer 
with self-induced pressure with subsonic external flow yield the same results. Thus, using 
the notation introduced above, when frequency o<o,_ -2.293, the perturbations are damped as 
5-00, not damped when o= o*, and when o>o, they increase with increasing 2. Since in 
the limit condition (5) the unknown functions are required to approach zero as z-00, which 
is necessary for the application of the Fourier transform, we confine the analysis to the 
range 

0 < o < o,z 2.298 (9) 

Although the derived solution (8) formally exists also for o>o*, we shall not consider 
such o, since the question of existence of a steady (with respect to time) mode at such o 
requires a separate investigation. 

4 
w-1 

t $i.l 
f0 30 

Fig.1 Fig.2 

An integral of 0 obviously exists for any I, since with ~o,~--.oo the integrand is prop- 
ortional to 1 ~~l-‘~~ when 1 apI -0 and arg o1 = 0; the n integrand is bounded, and the inequality 
(9) ensures the absence of real roots in the denominator (9,10/. The basic complexities of 
the calculation of pressure p1 is related to the nonanalyticity of function a. Unlike in 
the supersonic case /ll/, it is not possible here to represent the result of calculations in 
the form of everywhere converging series in powers of z’/a . It can be shown that for a sub- 
sonic flow even in the steady case (w= 0) logarithmic terms appear in the series. Calculation 
of pressure p1 defined in (8) was carried out in two stages. First, the integral of the deri- 
vative dQ1d.z was determined. For this the derivative was divided in three terms proportional 
to exp(io,s,) (where x1= z,z- b,z- a), calculation of the integral of each term was effected 
over the most convenient integration path: for ~~60 over the imaginary negative semiaxis; 
for zl>O over the imaginary positive semiaxis, and for zl>O it was also necessary to summate 
the series formed by residues of integrands. In the second stage integration was carried out 
with respect to z, and pressure p1 was determined. Curves of the dependence of pressure p1 
on .z in the case of a triangle with parameters b= i,a= 2 oscillating at frequencies o = 1;2; 
2.290 at the instant of time t= 0 appear in Fig.2. 

Let us consider the asymptotic behavior of pressure at large z, beginning with the case 
of z--f--. We represent the integral of Din the form 
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(10) 

then in expressions for I, and I, under the integral sign we have analytic functions. To 
calculate 1, we use the contour lying in the third quadrant and consistingofsegments [-r,O] 
and [0, -ir] , and the arc of circle connecting points -ir and -n (Fig.1). Inside the part 
of the complex plane enveloped by the above contour the denominator of the integrand Q(sJ,,,,~) 
for any r>O and o that satisfy the inequality (9) has no roots; the integral along the arc 
of circle approaches zero (s<O) as r+ co, hence integration along the real axis in 12 (IO) 
can, in conformity with the Cauchy theorem, be replaced by integration along the imaginary 
axis from 00 exp(- in/Z) to zero. For the similar transformation of 1, we use the contourthat 
is symmetric to that for I, about the imaginary axis. Then, carrying out transformations as- 
sociated with the substitution w2 = o,exp(- in/z), as z--+ - 00 we have 

m 

s Dddoz-ub ~-~++(a+b)z-~+ 
i -cc 

+ (a” +- ab + b’)P + + (a + b) (a” + ba) ~9 $ 

[ 
+ (a” + a3b + aaba + abs + b4) + 120o-$1 Z--B + . . .} 

(11) 

Formula (111 shows that the asymptotics is not uniform with respect to o: as o-t0 the 
coefficient in the fifth expansion term approaches infinity. Analysis of asymptotics in the 
steady flow (w = 0) shows that as Z-+-M the first three terms are the same as in (ll), 
while the fourth is proportional to (-~)-r4/~. 

Consider the asymptotics of pressure as I+ M. To evaluate integral 7% (10) we shall 
analyze the integrand in the second quadrant, where the denominator of expression Q 64, 4 
under the sign of the integral has an infinite denumerable set of roots. Although the posi- 
tion of roots depends on w, all of them, except the first lie near the half-line o2 = 1 w, 1 
exp(- 5ink) and have w2 = 0 as the concentration point (Fig.1). The first root oal as w 
increases from 0 to o* moves away from the half-line o2 =] a9 1 exp(--in/b) and reaches the real 
axis w2i(w*) = -1.OCO5. Its trajectory is shown in Fig.1 by the dash line. The analysis of 
roots shows that for 61 from the range (9) it is possible to draw from the coordinate origin 
a half-line at such angle a(~) (-n > a> - 5ni4) that the first root lies on one side ofthe 
half-line and all others on the other. Let us take the contour lying in the second quadrant 
and consisting of segments I-- r,O], [O,r exp(ia)] and the arc of circle connecting points -r and 
r exp(iu) (Fig-l). Inside that contour lies a first order pole of the integrand of the expres- 
sion of 1, and the integral over the arc of circle approaches zero as r+ca and s> a. AP- 
plying the Cauchy theorem on residues and introduce in the integral over the half-line the 
substitution of variables w2 = w,exp(ia)and also a, = -s --a (0 <a,<n/4), we obtain 

I, = 2ni res0 (co, maI (co), x, b, a) + (12) 

[Ai’ (‘A) + (- 7exp in&--4ia~/3) 4” (I0 - I1 (&,))]-I da, 

2ni res 0 (w, a1 (w), 5, b, a) = B, (0, us1 (a), b, a) x exp (iozl (0) Z) 

B1 = - 3&vqQ~ 
( 

1 - -.L& e- illhb + 0 a-_b e-imna 
) 

Ai’ (C&) x 

12 (I0 -II K&I)) + %I (I - w/&) Ai (QIW, 
Q,, = i’l~w~,,-‘k 

qua p$ = - wgz sin aI - iw~ cos aI, 8, = ow,+ exp (5id6 + 2ia,/3) 

To evaluate integral I, we consider the integrand in the first quadrant, where the de- 
nominator of integrand Q@,,o,) has no roots. We select the contour consisting of segments 
[rexp(in/2), 01, [O,r] and the arc of circle connecting points r and r exp (in/z). Sincetheintegral 
over the arc of a circle approaches zero as r-+00, the upper limit of integration in I, can 
be changed to wexp(ln/2),and the imaginary axis taken as the integration path. Introducing in 
such integral the substitution of variables OS= co3 exp(is/2), we obtain 
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The integral I, in (12) as well as integral I II in (13) have been reduced to the form 
suitable for the application of Laplace's lemma /12/. Retaining in the expression for the 
asymptotics as 5-t 00 also the term generated by the pole of @, we obtain 

m 

s 
x-a++(a+b)x-8+ +- (a" + ab + ba) x-& + + (a + b) (a* + ba)x-6 f (14) 

-=a 

[ dj- (a4 + a3b + aaba + ab* f V) + IZOw-a] x-81 + &&WWX 

Asymptotics (14) coincide within the exponential terms with asymptotics (11) and is non- 
uniform with respect to o: as o-+0 the coefficient at the fifth expansion term approaches 
infinity. Analysis of the asymptotics of the steady flow (o =0) shows that, as x+00, only 
the first two terms are the same as in (14), while the third term is proportional to x--'"I*. At 
large x and o-+o* (o < a,) the determining term in (14) is the exponential one, since then 

Im aa1 + 0 (note the absence of a similar term in expansion (11)). 
The derived solution defines the perturbations induced in the boundary layer by the oscil- 

lating vibrator. As the oscillation frequency o approaches the critical value O* predicted 
by the classical theory of stability; the closer is 0 to o* the slower is the damping of oscil- 
lations downstream /of the oscillator/, (Fig.2) and the law of damping (exp(-x Im coal(o))) 
depends only on frequency m. The initial oscillation amplitude is defined by the constant B1 
dependent on the specific form and dimensions a and b of the oscillator. Upstream (x<O) the 
closeness of o to O* does not manifest itself in anyway (Fig.2, o = 2.29). 
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